Electron

Difference Between PAM and IBM - Plasma Arc Machining and Ion Beam Machining

Different forms of energy (such as mechanical, thermal, electrical, chemical, electro-chemical, light, etc.) are directly utilized in advanced machining processes to realize material removal from the workpiece for fabricating intended 3-D feature following the subtractive manufacturing approach. Plasma Arc Machining (PAM) is one such advanced machining process where thermal energy (heat) is primarily used to melt down and vaporize material from the workpiece. A high temperature jet of thermal plasma

Difference Between Transferred Arc and Non-Transferred Arc Plasma Torch

Thermal plasma is the ionic form of matter that is obtained by heating suitable gas to a very high temperature. Plasma consists of excited ions of gaseous atoms and free electrons (thus plasma can conduct electricity). Localized temperature of plasma can reach 30,000°C or even more. Such a high temperature can virtually melt and vaporize any material regardless of its physical state. An artificially created controllable jet of high temperature

Difference between EBM and IBM

Non-traditional machining (NTM) processes can directly utilize different forms of energy (like mechanical, thermal, chemical, electric, light, etc.) to selectively remove material from the workpiece in order to fabricate intended 3-D feature. These processes eliminate the barrier imposed by mechanical strength and hardness of the workpiece for processing by a conventional metal cutting process. Several NTM processes have emerged over the last few decades, which include AJM, USM, CHM, ECM,

Difference between arc welding and gas welding

Welding is one joining process where two or more components can be joined permanently with or without the application of heat, pressure, and filler metal. All welding processes can be broadly divided into two categories – fusion welding and solid-state welding. In fusion welding, heat must be applied to melt down the connecting surfaces of the parent component for coalescence or weld bead formation. In solid-state welding, no such melting

Difference between consumable electrode and non-consumable electrode

Arc welding is one type of fusion welding process where an electric arc is used to supply heat for melting the faying surfaces of the parent metal and also the filler metal. There are several arc welding processes namely Shielded Metal Arc Welding (SMAW), Gas Metal Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW), Flux Cored Arc Welding (FCAW), Submerged Arc Welding (SAW), Electroslag Welding (ESW), Carbon Arc Welding (CAW),

Difference between DCEN and DCEP polarities in arc welding

Arc welding is one type of fusion welding process where an electric arc is used to supply necessary heat for fusing the faying surfaces of the base metals and also the filler metal. In every arc welding process, the conductive base plates are connected with one terminal of the power source, while the electrode is connected with other terminal. A small gap (1 – 3mm) is always maintained between the