Chip

Difference between drilling and end milling

Machining is one type of manufacturing process where excess material is removed from the workpiece to impart intended shape, size and finish. It follows the principle of subtractive manufacturing approach to build 3-D components. Conventional machining processes employ a cutting tool that contain one or more shape edges, and layer by layer material is removed from the workpiece in the form of solid chips. In order to process a wide

Comparison among drilling, boring and reaming

Macro-scale hole fabrication on a solid surface requires several different metal cutting operations based on the size and accuracy requirement. One typical series for hole making can be— (i) Centering, (ii) Drilling, (iii) Boring, (iv) Reaming and (v) Honing. Centering is carried out to locate the hole for easy and accurate alignment of a drill. Although it is optional, but centering can improve precision. Drilling is a process of originating

Typical drills and reamers

In order to make a macro-scale hole on a solid surface, a series of different machining processes are carried out depending on the finish and tolerance level requirement. One typical series of hole production can be— (i) Centering, (ii) Drilling, (iii) Boring, (iv) Reaming, and (v) Honing. Centering is performed to locate the hole center, drilling is carried out to originate a hole and boring is carried out to enlarge

Images of drilling and boring tools

In order to create a hole on a solid surface, a series of different machining processes are carried out depending on the hole diameter, finish and tolerance level requirement. One typical steps for hole making can be— (i) Centering, (ii) Drilling, (iii) Boring, (iv) Reaming, and (v) Honing. Each of these processes has different objectives and can be applied under certain conditions. One operation cannot be carried out prior to

Schematic diagram of three deformation zones in machining

Machining or metal cutting is one subtractive manufacturing process that indicates layer by layer material is gradually removed from the workpiece to impart desired shape, size and finish. In conventional machining processes (such as turning, threading, milling, facing, drilling, boring, etc.), material is removed with the assistance of a wedge shaped cutting tool. Here the cutting tool compresses a thin layer of work material and gradually shears it off in

Classification of rake angles positive rake negative rake and zero rake from differencebox.com

Rake angle of the cutting tool is defined as the angle of orientation of tool’s rake surface from the reference plane (πR) and measured on some other plane. Depending on the plane on which it is projected and measured, it may have various names. At the same time, rake angle may have positive, negative or even zero value based on the inclination of rake surface from reference plane. Each of

Differences between machining and grinding

Primary objective of any subtractive manufacturing process is to remove layer by layer material from a solid 3-D blank to achieve desired shape, size and finish. Achieving high dimensional accuracy, close tolerance and surface finish are usually not possible by conventional machining processes like turning, milling, shaping, planing, drilling, etc. Such processes are mainly applied for bulk removal (stock removal) of material with high material removal rate. In order to

Differences between coolant and lubricant

During conventional machining or metal cutting, excess material is gradually removed from the workpiece in the form of chips using a wedge shaped cutting tool. Primarily due to continuous rubbing between moving chips and rake surface of cutting tool, intense heat is generated at the cutting zone. In continuous machining, this cutting heat leads to increase in temperature at the cutting zone. Excessive cutting temperature has several detrimental effects on

Differences between dry machining and wet machining

Machining is one secondary manufacturing process that is performed to impart desired shape, size and surface finish by removing unwanted material from a solid 3-D blank. In conventional machining operations, the cutting tool compresses a thin layer of workpiece material to gradually shear it off in the form of chips. The primary shear zone exists surrounding the concentrated shear plane along which work material undergoes shearing to become chip. Initially

Differences between flood cooling and MQL

In conventional machining operations, the cutting tool comes in physical contact with the workpiece to remove material in the form of chips. This chips flow over the rake surface of the tool before leaving the cutting zone. Presence of relative velocity under high contact pressure between the flowing chips and rake surface of the tool leads to excessive rubbing and heat generation. Excessive cutting heat or temperature has several detrimental

Difference between single point and multi point cutting tool

Cutting Tool or Cutter is a wedge shaped device that compresses the workpiece material during machining to gradually remove excess material by shearing in order to obtain desired shape, size and accuracy. Geometry, orientation and material are three important factors that influence performance of a cutting tool in accomplishing material removal. Every conventional machining operation employs a physical cutting tool. Although basic shape and feature of such cutting tool vary

Difference between up milling and down milling

Milling is one type of conventional machining process primarily for generating flat or stepped surfaces. In peripheral milling, cutting velocity is imparted by rotating the milling cutter about a fixed horizontal axis; whereas, the feed rate is imparted by moving the workpiece (basically worktable) against the rotating milling cutter. Since both cutting velocity and feed rate are vector quantities, so based on their mutual directions, peripheral milling can be classified